Жанр поста - гротескный мульфильм о текучести персонала.
Кейс на основе данных нашего исследования факторов текучести персонала. К кейсу можно по разному относиться, я бы практикам рекомендовал смотреть на него как на практику создания скоринговых карт текучести персонала: как на основе входных данных о кандидатах можно прогнозировать текучесть. Фишка здесь в использовании регрессии Кокса, которая не отвечает на вопросы:
Показываю схематически, как это работает.
Какие данные нужны:
Как читать такой тип диаграммы - Анализ и визуализация дожития: чем HR похож на медиков.
Ок, это некая средняя по больнице выбытия работников. И некий средний работник данной компании имеет 50-ти % вероятность дожить до 42 месяцев (3, 5 года). Или, если вам так удобней, средний срок жизни работника в компании - 3,5 года.
Выявили, что шкала Импульсивности - Самоконтроля позволяет прогнозировать волюнтарную текучесть.
Call:
coxph(formula = Surv(stag, event) ~ Ш8...ИМПУЛЬСИВНОСТЬ...САМОКОНТРОЛЬ.,
data = q)
n= 998, number of events= 555
coef exp(coef) se(coef) z Pr(>|z|)
Ш8...ИМПУЛЬСИВНОСТЬ...САМОКОНТРОЛЬ. -0.06453 0.93751 0.02084 -3.097 0.00196 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
exp(coef) exp(-coef) lower .95 upper .95
Ш8...ИМПУЛЬСИВНОСТЬ...САМОКОНТРОЛЬ. 0.9375 1.067 0.9 0.9766
Concordance= 0.535 (se = 0.014 )
Rsquare= 0.01 (max possible= 0.999 )
Likelihood ratio test= 9.61 on 1 df, p=0.00194
Wald test = 9.59 on 1 df, p=0.001958
Score (logrank) test = 9.61 on 1 df, p=0.001938
Модель слабая, Concordance= 0.535 - как бы ни о чем совсем. Но скажите спасибо импульсивности, что она связана с текучестью. Это уже здорово!
Что нам дает это знание? Представим, что к нам пришли два чувака, у одного по шкале импульсивность - самоконтроль 3 балла (высокая импульсивность), у другого 9 (низкая импульсивность).
Давайте визуализируем различия в их прогнозе текучести.
Пыпыц.... они идут практически рядышком... Читать эту диаграмму нужно так:
Первый с 50-ти % вероятностью доработает до 36 месяце или трех лет, а в второй с той же 50-ти % вероятностью доработает до 54 месяцев или 4,5 лет. В цифрах не так уж мало. Разница практически в 1,5 раза. И если у нас нет проблем с другими факторами (а мы, конечно, должны еще прогнозировать их эффективность), то возьмем второго.
После моих исследований теперь все компании собирают информацию о том, через какой источник трафика к нам пришел кандидат. Итак, у нас есть информация о том, через какой источник трафика пришел кандидат в компанию. Я условно поделил все источники на 'good' и 'bad'. К плохим отошли все, что связаны с джоб сайтами - они дают самых текучих кандидатов. По нашим данным (не претендую на репрезентативность выборки, вы у себя в компании сами проверите, гарантирую только то, что пришедшие с доб сайтов будут течь быстрее) пришедшие с доб сайтов имеют риски текучести в 1,3 раза больше, чем пришедшие со всех других источников вместе взятых.
Давайте мы будем рисовать гротеск - усугубим, так сказать, ситуацию. Тот чувак, который с высокой импульсивностью у нас придет через джоб сайт, в тот, что с низкой импульсивностью, у нас будет рефералом.
Пыпыц.... Найдите 10 отличий с предыдущей картинкой....
Первый чувак теперь имеет 50 % вероятности доработать до 30 месяцев (было 36 при одной импульсивности), а второй чувак - реферал с низкой импульсивностью - ту же вероятность для 71 месяца.
Мы получаем риски для одного и для второго более чем в два раза.
йогурты подразделения в компании одинаково полезны. И по степени риска я их опять поделил на хорошие и плохие. И первого чувака мы обязательно по сюжету нашего гротескного романа отправим в плохое подразделение с точки зрения йогурта текучести персонала, а второго в хорошее.
И снова Пыпыц. Невооруженным взглядом видно, что через пять лет жизни в компании чуваки с высокой импульсивности, пришедшие через джоб сайт в плохие подразделения практический вымрут, а вот чуваки с высоким самообладанием, пришедшие рефералами в хорошие подразделения через пять лет еще не используют 50 % вероятность оттока.
Машина нам скажет точнее, и мы повторим, первый чувак имеет 50 % вероятность уйти в первые 17 месяцев работы (изначально было 36), а второй в 80 (было 54).
Отсутствие наставника окончательно добило нашего первого чувака, и он с 50 % вероятностью покинет нашу компанию в течение первого года работы в нашей компании, и практически со 100 % вероятностью уйдет из компании в три года.
Второй же чувак, через три года, когда первый уже будет работать в другом месте (опять через джоб сайт), будет иметь 75 % вероятность остаться работать в нашей компании.
Но в целом, на основе даже вот таких факторов мы можем выстроить скоринговую модель отбора. И если мы не можем не взять чувака с высокой импульсивностью, пришедшего джобсайта, то как минимум, мы можем послать его в "хорошее" подразделение и/или дать ему наставника. Либо, как вариант, послать чувака с высоким самоконтролем - реферала в "плохое" подразделение или сэкономить на наставнике, если наши ресурсы ограничены.
Это уже управленческая практика. Но в любом случае, мы по истечении определенного срока, когда начали пользоваться скоринговой картой, должны проверять, что нам дала наша политика подбора - начинаем заново с шага №1.
Удачи вам во внедрении этого инструмента.
Кейс на основе данных нашего исследования факторов текучести персонала. К кейсу можно по разному относиться, я бы практикам рекомендовал смотреть на него как на практику создания скоринговых карт текучести персонала: как на основе входных данных о кандидатах можно прогнозировать текучесть. Фишка здесь в использовании регрессии Кокса, которая не отвечает на вопросы:
- уволится / не уволится кандидат;
- проработает более полугода или нет;
- как долго проработает.
Показываю схематически, как это работает.
Какие данные нужны:
- дата приема
- дата увольнения (если работник еще работает, стоит пусто);
- Любая информация о работнике, какую можно собрать.
Шаг 1. Даем общую картинку текучести персонала по компании
Это общая картина текучести персонала. Где по оси X - стаж работы, ось Y - вероятность дожития.Как читать такой тип диаграммы - Анализ и визуализация дожития: чем HR похож на медиков.
Ок, это некая средняя по больнице выбытия работников. И некий средний работник данной компании имеет 50-ти % вероятность дожить до 42 месяцев (3, 5 года). Или, если вам так удобней, средний срок жизни работника в компании - 3,5 года.
Шаг 2. Первый драйвер
Я провел анализ с использованием регрессии Кокса, где Y - время дожития, а предикторы - шкалы теста Big5 и КТО (и мы, конечно же, говорим про волюнтарную текучесть - когда уходят по собственному желанию).Выявили, что шкала Импульсивности - Самоконтроля позволяет прогнозировать волюнтарную текучесть.
Call:
coxph(formula = Surv(stag, event) ~ Ш8...ИМПУЛЬСИВНОСТЬ...САМОКОНТРОЛЬ.,
data = q)
n= 998, number of events= 555
coef exp(coef) se(coef) z Pr(>|z|)
Ш8...ИМПУЛЬСИВНОСТЬ...САМОКОНТРОЛЬ. -0.06453 0.93751 0.02084 -3.097 0.00196 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
exp(coef) exp(-coef) lower .95 upper .95
Ш8...ИМПУЛЬСИВНОСТЬ...САМОКОНТРОЛЬ. 0.9375 1.067 0.9 0.9766
Concordance= 0.535 (se = 0.014 )
Rsquare= 0.01 (max possible= 0.999 )
Likelihood ratio test= 9.61 on 1 df, p=0.00194
Wald test = 9.59 on 1 df, p=0.001958
Score (logrank) test = 9.61 on 1 df, p=0.001938
Модель слабая, Concordance= 0.535 - как бы ни о чем совсем. Но скажите спасибо импульсивности, что она связана с текучестью. Это уже здорово!
Что нам дает это знание? Представим, что к нам пришли два чувака, у одного по шкале импульсивность - самоконтроль 3 балла (высокая импульсивность), у другого 9 (низкая импульсивность).
Давайте визуализируем различия в их прогнозе текучести.
Пыпыц.... они идут практически рядышком... Читать эту диаграмму нужно так:
Первый с 50-ти % вероятностью доработает до 36 месяце или трех лет, а в второй с той же 50-ти % вероятностью доработает до 54 месяцев или 4,5 лет. В цифрах не так уж мало. Разница практически в 1,5 раза. И если у нас нет проблем с другими факторами (а мы, конечно, должны еще прогнозировать их эффективность), то возьмем второго.
Шаг 3. Добавляем драйверы
Но мы же не только тест с ними проводили, мы другую информацию собирали.Давайте мы будем рисовать гротеск - усугубим, так сказать, ситуацию. Тот чувак, который с высокой импульсивностью у нас придет через джоб сайт, в тот, что с низкой импульсивностью, у нас будет рефералом.
Пыпыц.... Найдите 10 отличий с предыдущей картинкой....
Первый чувак теперь имеет 50 % вероятности доработать до 30 месяцев (было 36 при одной импульсивности), а второй чувак - реферал с низкой импульсивностью - ту же вероятность для 71 месяца.
Мы получаем риски для одного и для второго более чем в два раза.
Шаг 3. Плюс подразделение
А кроме того, наш анализ показал, что не всеИ снова Пыпыц. Невооруженным взглядом видно, что через пять лет жизни в компании чуваки с высокой импульсивности, пришедшие через джоб сайт в плохие подразделения практический вымрут, а вот чуваки с высоким самообладанием, пришедшие рефералами в хорошие подразделения через пять лет еще не используют 50 % вероятность оттока.
Машина нам скажет точнее, и мы повторим, первый чувак имеет 50 % вероятность уйти в первые 17 месяцев работы (изначально было 36), а второй в 80 (было 54).
Шаг 4. Добьем наставником.
И в нашей компании есть избирательная система наставничества, которая также влияет на текучесть. Вы уже знаете, кому наствник достанется, а кому нет.Отсутствие наставника окончательно добило нашего первого чувака, и он с 50 % вероятностью покинет нашу компанию в течение первого года работы в нашей компании, и практически со 100 % вероятностью уйдет из компании в три года.
Второй же чувак, через три года, когда первый уже будет работать в другом месте (опять через джоб сайт), будет иметь 75 % вероятность остаться работать в нашей компании.
Практические выводы
Модель при всех ухищрениях все равно остается не очень хорошей - Concordance= 0.62. Она требует кросс валидации. И т.д. И т.п..Но в целом, на основе даже вот таких факторов мы можем выстроить скоринговую модель отбора. И если мы не можем не взять чувака с высокой импульсивностью, пришедшего джобсайта, то как минимум, мы можем послать его в "хорошее" подразделение и/или дать ему наставника. Либо, как вариант, послать чувака с высоким самоконтролем - реферала в "плохое" подразделение или сэкономить на наставнике, если наши ресурсы ограничены.
Это уже управленческая практика. Но в любом случае, мы по истечении определенного срока, когда начали пользоваться скоринговой картой, должны проверять, что нам дала наша политика подбора - начинаем заново с шага №1.
Удачи вам во внедрении этого инструмента.
На этом все, читайте нас в телеграмме и вконтакте
Комментариев нет:
Отправить комментарий